Solving Dynamic Games with Newton's Method

KARL SCHMEDDERS

Kellogg School of Management Northwestern University

Institute for Computational Economics University of Chicago

August 2, 2007

Discrete-Time Finite-State Stochastic Games

Central tool in analysis of strategic interactions among forward-looking players in dynamic environments

Example: The Ericson & Pakes (1995) model of dynamic competition in an oligopolistic industry

Little analytical tractability

Most popular tool in the analysis: The Pakes & McGuire (1994) algorithm to solve numerically for an MPE (and variants thereof)

Applications

Advertising (Doraszelski & Markovich 2007)

Capacity accumulation (Besanko & Doraszelski 2004, Chen 2005, Ryan 2005, Beresteanu & Ellickson 2005)

Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)

Consumer learning (Ching 2002)

Firm size distribution (Laincz & Rodrigues 2004)

Learning by doing (Benkard 2004, Besanko, Doraszelski, Kryukov & Satterthwaite 2007)

Applications cont'd

Mergers (Berry & Pakes 1993, Gowrisankaran 1999)

Network externalities (Jenkins, Liu, Matzkin & McFadden 2004, Markovich 2004, Markovich & Moenius 2007)

Productivity growth (Laincz 2005)

R&D (Gowrisankaran & Town 1997, Auerswald 2001, Song 2002, Yeltekin et al. 2007)

Technology adoption (Schivardi & Schneider 2005)

International trade (Erdem & Tybout 2003)

Finance (Goettler, Parlour & Rajan 2004, Kadyrzhanova 2005).

Need for better Computational Techniques

Doraszelski and Pakes (2006, in: Handbook of IO)

"Moreover the burden of currently available techniques for computing equilibria to the models we do know how to analyze is still large enough to be a limiting factor in the analysis of many empirical and theoretical issues of interest."

This Tutorial

- 1. Discrete-Time Finite-State Stochastic Games
- 2. Separable Game
- 3. Solution Methods for Dynamic Games

Discrete-Time Finite-Space Stochastic Games

State Space

Infinite-horizon game in discrete time $t = 0, 1, 2, \dots$

Set of N players, $i=1,\ldots,N$

At time t player i is in one of finitely many states $x^i_t \in X^i$

State space of the game $X = \prod_i X^i$

State in period t is $x_t = (x_t^1, \dots, x_t^N)$

Notation: $x_t^{-i} = (x_t^1, \dots, x_t^{i-1}, x_t^{i+1}, \dots, x_t^N)$

Player's Actions and Transitions

Player *i*'s action in period *t* is $u_t^i \in U^i(x_t)$

Set of feasible actions $U^{i}\left(x_{t}\right)$ is arbitrary, often $U^{i}=\mathbb{R}_{+}^{K}$

Players' actions at time t: $u_t = (u_t^1, \dots, u_t^N)$

Law of motion: State follows a controlled discrete-time, finite-state, first-order Markov process with transition probability $\Pr(x'|u_t, x_t)$

Special case of independent transitions:

$$\Pr\left(x'|u_t, x_t\right) = \prod_{i=1}^{N} \Pr^i\left(\left(x'\right)^i | u_t^i, x_t^i\right)$$

Objective Function

Player *i* receives a payoff of $\pi^i(u_t, x_t)$ in period *t*

Objective is to maximize the expected NPV of future cash flows

$$\mathsf{E}\left\{\sum_{t=0}^{\infty}\beta^{t}\pi^{i}\left(u_{t},x_{t}\right)\right\},$$

with discount factor $\beta \in (0,1)$

Bellman Equation

 $V^i(\boldsymbol{x})$ is the expected NPV to player i if the current state is \boldsymbol{x}

Bellman equation for player i is

$$V^{i}(x) = \max_{u^{i}} \pi^{i}\left(u^{i}, U^{-i}(x), x\right) + \beta \mathsf{E}_{x'}\left\{V^{i}(x') | u^{i}, U^{-i}(x), x\right\}$$
(1)

where $U^{-i}\left(x
ight)$ denotes feedback (Markovian) strategies of other players

Player *i*'s strategy is given by

$$U^{i}(x) = \arg\max_{u^{i}} \pi^{i}\left(u^{i}, U^{-i}(x), x\right) + \beta \mathsf{E}_{x'}\left\{V^{i}\left(x'\right) | u^{i}, U^{-i}(x), x\right\}$$
(2)

System of equations defined by (1) and (2) for each player i = 1, ..., N and each state $x \in X$ defines a pure-strategy MPE

Example of a Separable Game: Patent Race

Patent Race Between Two Firms

 ${\cal N}$ innovation stages

Firms start race at stage 0

Period t innovation stages: $(x_{1,t}, x_{2,t})$ where $x_{i,t} \in X \equiv \{0, ..., N\}, i = 1, 2$

Period t investment: $a_{i,t} \in A = [0, \overline{A}] \subset \mathbb{R}_+$, i = 1, 2

Cost of investment: $C_i(a) = c_i a^{\eta}, \ \eta \in \mathbb{N}, \ c_i > 0, \ i = 1, 2$

Independent and stochastic innovation technologies

Transition from State to State

Transition from period to period: $x_{i,t+1} = x_{i,t}$ or $x_{i,t+1} = x_{i,t} + 1$

Markov process (depends on investment levels)

Firm i's state evolves according to

$$x_{i,t+1} = \begin{cases} x_{i,t}, & \text{with probability } p(x_{i,t}|a_{i,t}, x_{i,t}) \\ \\ x_{i,t} + 1, & \text{with probability } p(x_{i,t} + 1|a_{i,t}, x_{i,t}) \end{cases}$$

Distribution over next period's states

$$p(x|a,x) = F(x|x)^a$$

$$p(x+1|a,x) = 1 - F(x|x)^a$$

 $F(\boldsymbol{x}|\boldsymbol{x}) \in (0,1)$ is probability that there is no change in state if a=1

Firms' Optimization Problem

First firm to reach state N wins the race and receives prize Ω Ties are broken by flip of a coin

Firms discount future costs and revenues at common rate $\beta < 1$

Firms' objective: maximize expected discounted payoffs

Equilibrium I

Restriction to pure Markov strategies

Firm i's strategy: $\sigma_i(\cdot) : X \times X \to A$

Expected discounted payoff: $V_i(\cdot)$: $X \times X \to \mathbb{R}$

Bellmann equation for $x_i, x_{-i} < N$,

$$V_{i}(x_{i}, x_{-i}) = \max_{a_{i} \in A} \left\{ -C_{i}(a_{i}) + \beta \sum_{x'_{i}, x'_{-i}} p(x'_{i}|a_{i}, x_{i}) p(x'_{-i}|a_{-i}, x_{-i}) V_{i}(x'_{i}, x'_{-i}) \right\}$$

Equilibrium II

Boundary condition at terminal states

$$V_i(x_i, x_{-i}) = \begin{cases} \Omega, & \text{ for } x_{-i} < x_i = N \\ \Omega/2, & \text{ for } x_i = x_{-i} = N \\ 0, & \text{ for } x_i < x_{-i} = N \end{cases}$$

Optimal strategies satisfy

$$\sigma_i(x_i, x_{-i}) = \arg\max_{a_i \in A} \left\{ -C_i(a_i) + \beta \sum_{x'_i, x'_{-i}} p(x'_i|a_i, x_i) p(x'_{-i}|a_{-i}, x_{-i}) V_i(x'_i, x'_{-i}) \right\}$$

Our Equilibrium Equations

$$0 = -V_{i}(x_{i}, x_{-i}) - c_{i}a_{i}^{\eta} + \beta \sum_{\substack{x'_{i}, x'_{-i}}} p(x'_{i}|a_{i}, x_{i})p(x'_{-i}|a_{-i}, x_{-i})V_{i}(x'_{i}, x'_{-i})$$

$$0 = -\eta c_{i}a_{i}^{\eta-1} + \beta \sum_{\substack{x'_{i}, x'_{-i}}} \frac{\partial}{\partial a_{i}} p(x'_{i}|a_{i}, x_{i})p(x'_{-i}|a_{-i}, x_{-i})V_{i}(x'_{i}, x'_{-i})$$

Parameter specification: c_1 , c_2 , η , $F(x_1, x_2) \equiv F$, Ω

Unknowns: $V_1(x_1, x_2)$, $V_2(x_1, x_2)$, $a_1(x_1, x_2)$, $a_2(x_1, x_2)$

Four equations per stage (x_i, x_{-i})

Backward induction: instead of solving all equations simultaneously

solve each stage game separately

Gaussian Methods Newton's Method

Solving Systems of Nonlinear Equations

Nonlinear Systems of Equations

System F(x) = 0 of n nonlinear equations in n variables $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$

$$F_1(x_1, x_2, \dots, x_n) = 0$$

$$F_2(x_1, x_2, \dots, x_n) = 0$$

$$\vdots$$

$$F_{n-1}(x_1, x_2, \dots, x_n) = 0$$

$$F_n(x_1, x_2, \dots, x_n) = 0$$

Initial guess $x^0 = (x_1^0, x_2^0, \dots, x_n^0)$

Methods generate a sequence of iterates $x^0, x^1, x^2, \ldots, x^k, x^{k+1}, \ldots$

Solution Methods

Most popular methods in economics for solving F(x) = 0

- 1. Gauss-Jacobi Method
- 2. Gauss-Seidel Method
- 3. Newton's Method
- 4. Homotopy Methods

Gaussian Methods Newton's Method

Gauss-Jacobi Method

Last iterate $x^k = (x_1^k, x_2^k, x_3^k, \dots, x_{n-1}^k, x_n^k)$

New iterate \boldsymbol{x}^{k+1} computed by repeatedly solving one equation in one variable using only values from \boldsymbol{x}^k

$$F_1(x_1^{k+1}, x_2^k, x_3^k, \dots, x_{n-1}^k, x_n^k) = 0$$

$$F_2(x_1^k, x_2^{k+1}, x_3^k, \dots, x_{n-1}^k, x_n^k) = 0$$

$$\vdots$$

$$F_{n-1}(x_1^k, x_2^k, \dots, x_{n-2}^k, x_{n-1}^{k+1}, x_n^k) = 0$$

$$F_n(x_1^k, x_2^k, \dots, x_{n-2}^k, x_{n-1}^k, x_n^{k+1}) = 0$$

Computer storage: Need to store both \boldsymbol{x}^k and \boldsymbol{x}^{k+1}

Interpretation as iterated simultaneous best reply

Gaussian Methods Newton's Method

Gauss-Seidel Method

Last iterate $x^k = (x_1^k, x_2^k, x_3^k, \dots, x_{n-1}^k, x_n^k)$

New iterate x^{k+1} computed by repeatedly solving one equation in one variable and immediately updating the iterate

$$F_{1}(x_{1}^{k+1}, x_{2}^{k}, x_{3}^{k}, \dots, x_{n-1}^{k}, x_{n}^{k}) = 0$$

$$F_{2}(x_{1}^{k+1}, x_{2}^{k+1}, x_{3}^{k}, \dots, x_{n-1}^{k}, x_{n}^{k}) = 0$$

$$\vdots$$

$$F_{n-1}(x_{1}^{k+1}, x_{2}^{k+1}, \dots, x_{n-2}^{k+1}, x_{n-1}^{k}, x_{n}^{k}) = 0$$

$$F_n(x_1^{k+1}, x_2^{k+1}, \dots, x_{n-2}^{k+1}, x_{n-1}^{k+1}, x_n^{k+1}) = 0$$

Computer storage: Need to store only one vector

Interpretation as iterated sequential best reply

Solving a Simple Cournot Game

N firms

Firm i's production quantity q_i

Total output is $Q = q_1 + q_2 + \ldots + q_N$

Linear inverse demand function, $P\left(Q\right) = A - Q$

All firms have identical cost functions $C(q) = \frac{2}{3} c q^{3/2}$

Firm *i*'s profit function Π_i is

$$\Pi_{i} = q_{i} P\left(q_{i} + Q_{-i}\right) - C(q_{i}) = q_{i} \left(A - (q_{i} + Q_{-i})\right) - \frac{2}{3} c q_{i}^{3/2}$$

First-order Conditions

Necessary and sufficient first-order conditions

$$A - Q_{-i} - 2q_i - c\sqrt{q_i} = 0$$

Firm $i\sp{s}$ best reply $R(Q_{-i})$ to a production quantity Q_{-i} of its competitors

$$q_i = R(Q_{-i}) = \left(\frac{A - Q_i}{2} + \frac{c^2}{8}\right) - \frac{c}{2}\sqrt{\frac{A - Q_{-i}}{2} + \frac{c^2}{16}}$$

Parameter values: N = 2 firms, A = 145, c = 4

Solving the Cournot Game with Gauss-Jacobi

k	q_i^k	$\max_i q_i^k - q_i^{k-1} $
0	10	—
1	52.9471	42.9471
2	34.3113	18.6358
3	42.3318	8.02047
4	38.8656	3.46613
5	40.3611	1.49545
6	39.7154	0.645682
7	39.9941	0.278695
15	39.9102	0.000336014
16	39.9100	0.000145047
20	39.910075	5.036(-6)
21	39.910078	2.174(-6)

Karl Schmedders

Solving Dynamic Games

Solving the Cournot Game with Gauss-Seidel

k	q_1^k	q_2^k	$\max_i q_i^k - q_i^{k-1} $
0	10	10	—
1	52.9471	34.3113	42.9471
2	42.3318	38.8656	10.6153
3	40.3611	39.7154	1.97068
4	39.9941	39.8738	0.366987
5	39.9257	39.9033	0.0683762
6	39.913	39.9088	0.0127409
7	39.9106	39.9098	0.00237412
8	39.9102	39.91	0.000442391
9	39.9101	39.9101	0.0000824347
10	39.9101	39.9101	0.0000153608
11	39.91008	39.91008	2.862(-6)

Karl Schmedders

Gaussian Methods Newton's Method

Gauss-Jacobi with N = 4 firms blows up

Cournot equilibrium $q^i=25 \mbox{ for all firms} x^0=(24,25,25,25)$

k	q_1^k	$q_2^k = q_3^k = q_4^k$	$\max_i q_i^k - q_i^{k-1} $
1	25	25.4170	1
2	24.4793	24.6527	0.7642
3	25.4344	25.5068	0.9551
4	24.3672	24.3973	1.1095
5	25.7543	25.7669	1.3871
13	29.5606	29.5606	8.1836
14	19.3593	19.3593	10.201
15	32.1252	32.1252	12.766
20	4.8197	4.8197	37.373
21	50.9891	50.9891	46.169

Karl Schmedders Solving Dynamic Games

Newton's Method

Foundation of Newton's Method: Taylor's Theorem

THEOREM. Suppose the function $F: X \to \mathbb{R}^m$ is continuously differentiable on the open set $X \subset \mathbb{R}^n$ and that the Jacobian function J_F is Lipschitz continuous at x with Lipschitz constant $\gamma^l(x)$. Also suppose that for $s \in \mathbb{R}^n$ the line segment $x + \theta s \in X$ for all $\theta \in [0, 1]$. Then, the linear function $L(s) = F(x) + J_F(x)s$ satisfies

$$||F(x+s) - L(s)|| \le \frac{1}{2}\gamma^L(x)||s||^2$$
.

Taylor's Theorem suggests the approximation $F(x+s) \approx L(s) = F(x) + J_F(x)s$

Newton's Method in Pure Form

Initial guess x^0

Given iterate x^k choose Newton step by calculating a solution s^k to the system of linear equations

$$J_F(x^k) \ \mathbf{s}^k = -F(x^k)$$

New iterate $x^{k+1} = x^k + s^k$

Excellent local convergence properties

Gaussian Methods Newton's Method

Solving Cournot Game (N = 4) with Newton's Method

k	q_i^k	$\max_i q_i^k - q_i^{k-1} $
0	10	—
1	24.6208	14.6208
2	24.9999	0.3791
3	25.0000	0.000108
4	25.0000	8.67(-12)

Shortcomings of Newton's Method

If initial guess x^0 is far from a solution Newton's method may behave erratically; for example, it may diverge or cycle (!)

If $J_F(x^k)$ is singular the Newton step may not be defined

It may be too expensive to compute the Newton step \boldsymbol{s}^k for large systems of equations

The root x^{\ast} may be degenerate ($J_{F}(x^{\ast})$ is singular) and convergence is very slow

Practical variants of Newton-like methods overcome all these issues

Practical Newton-like Method

General idea: Obtain global (!) convergence by combining the Newton step with line-search or trust-region methods from optimization

Merit function monitors progress towards root of ${\cal F}$

Most widely used merit function is sum of squares

$$M(x) = \frac{1}{2} \|F(x)\|^2 = \frac{1}{2} \sum_{i=1}^{n} F_i^2(x)$$

Any root x^{\ast} of F yields global minimum of M

Local minimizers with M(x) > 0 are not roots of F

$$\nabla M(\tilde{x}) = J_F(\tilde{x})^\top F(\tilde{x}) = 0$$

and so $F(\tilde{x}) \neq 0$ implies $J_F(\tilde{x})$ is singular

Line Search Method

Newton step

$$J_f(x^k) \ s^k = -F(x^k)$$

yields a descent direction of M as long as $F(x^k) \neq 0$

$$(s^k)^\top \nabla M(x^k) = (s^k)^\top J_F(x^k)^\top F(x^k) = -\|F(x^k)\|^2 < 0$$

Given step length α^k the new iterate is

$$x^{k+1} = x^k + \alpha^k s^k$$

Gaussian Methods Newton's Method

Step length

Inexact line search condition (Armijo condition)

$$M(x^{k} + \alpha s^{k}) \le M(x^{k}) + c \ \alpha \ \left(\nabla M(x^{k})\right)^{\top} s^{k}$$

for some constant $c \in (0,1)$

Step length is the largest α satisfying the inequality

For example, try $\alpha = 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \ldots$

This approach is not Newton's method for minimization

No computation or storage of Hessian matrix

Global Convergence Property

THEOREM. Suppose that J_F is Lipschitz continuous and both $||J_F(x)||$ and ||F(x)|| are bounded above in an open neighborhood of the level set $\{x: M(x) \leq M(x^0)\}$. Under some further mild technical conditions the sequence of iterates $x^0, x^1, \ldots, x^k, x^{k+1}, \ldots$ satisfies

$$\left(J_F(x^k)\right)^\top F(x^k) \to 0$$

as $k \to \infty$. Moreover, if $\|J_F(x^k)\| \ge \delta > 0$ then

$$F(x^k) \to 0.$$

Cournot Game with Learning and Investment

N=2 firms in dynamic Cournot competition

State of the game: production cost of two firms

Each period: Firms engage is quantity competition

Stochastic transition to state in next period depends on three forces

Learning: Current output may lead to lower production cost

Investment: Firms can also make investment expenditures to reduce cost

Depreciation: Shock to efficiency may increase cost

Period Game

Firm i's production quantity q_i

Total output is $Q = q_1 + q_2$

Linear inverse demand function, $P\left(Q\right)=A-Q$

Firms' production cost functions are quadratic $CP_i(q) = \frac{1}{2}b_iq^2$

Firms' profit functions are

$$\Pi_{1} = q_{1} P(q_{1} + q_{2}) - \theta_{1} \left(\frac{1}{2}b_{1}q_{1}^{2}\right)$$
$$\Pi_{2} = q_{2} P(q_{1} + q_{2}) - \theta_{2} \left(\frac{1}{2}b_{2}q_{2}^{2}\right)$$

Efficiency of firm i is given by θ_i

Dynamic Setting

Each firm can be in one of S states, $j=1,2,\ldots,S$

State j of firm i determines its efficiency level $\theta_i=\Theta^{(j-1)/(S-1)}$ for some $\Theta\in(0,1)$

Total range of efficiency levels $[\Theta,1]$ for any S

Possible transitions from state j to states j - 1, j, j + 1 in next period

Transition probabilities for firm i depend on production quantity q_i investment effort u_i depreciation shock

Transition Probabilities

Probability of successful learning (j to j + 1), $\psi(q) = \frac{\kappa q}{1+\kappa q}$ Probability of successful investment (j to j + 1), $\phi(u) = \frac{\alpha u}{1+\alpha u}$

Cost of investment for firm *i*, $CI_i(u) = \frac{1}{S-1} \left(\frac{1}{2} d_i u^2 \right)$

Probability of depreciation shock, δ

These individual probabilities, appropriately combined, yield transition probabilities

Equilibrium Equations

Bellman equation for each firm

First-order condition w.r.t. quantity q_i

First-order condition w.r.t. investment u_i

Three equations per firm per state

Total of $6 \ S^2$ equations

GAMS Code I

V1(m1e,m2e) = e = Q1(m1e,m2e)*(1 - Q1(m1e,m2e)/M - Q1(m1e,m2e))Q2(m1e,m2e)/M) - ((b1*power(Q1(m1e,m2e),2))/2. + a1*Q1(m1e,m2e))*theta1(m1e) - ((d1*power(U1(m1e,m2e),2))/2. +c1*U1(m1e,m2e))/(-1 + Nst) + (beta*((1 - 2*delta + power(delta,2))))+ Q2(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +alpha*kappa*power(delta,2)*U1(m1e,m2e)) + (alpha*delta alpha*power(delta,2))*U2(m1e,m2e) + Q1(m1e,m2e)*(delta*kappa kappa*power(delta,2) + power(delta,2)*power(kappa,2)*Q2(m1e,m2e)+ alpha*kappa*power(delta,2)*U2(m1e,m2e)) +U1(m1e,m2e)*(alpha*delta - alpha*power(delta,2) +

GAMS Code II

power(alpha,2)*power(delta,2)*U2(m1e,m2e)))*V1(m1e,m2e) + (delta power(delta,2) + kappa*power(delta,2)*Q1(m1e,m2e) +alpha*power(delta,2)*U1(m1e,m2e))*V1(m1e,m2e - 1) + ((alpha - 1))*U1(m1e,m2e - 1)) + ((alpha - 1))*U1(m1e,m2e))*U1(m1e,m2e) + ((alpha - 1))*U1(m1e,m2e))*U1(m1e,m2e))*U1(m1e,m2e) + ((alpha - 1))*U1(m1e,m2e))*U1(m1e,m2e) + ((alpha - 1))*U1(m1e,m2e))*U1(m1e,m2e))*U1(m1e,m2e) + ((alpha - 1))*U1(m1e,m2e))*U1(m1e,m2e) + ((alpha - 1))*U1(m1e,m2e)) + ((alpha - 1))*U1(m1e2*alpha*delta + alpha*power(delta,2))*U2(m1e,m2e) +(delta*power(alpha,2) power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +Q2(m1e,m2e)*(kappa - 2*delta*kappa + kappa*power(delta,2) +(alpha*kappa - alpha*delta*kappa)*U2(m1e,m2e) + U1(m1e,m2e)*(alpha*delta*kappa - alpha*kappa*power(delta,2) +delta*kappa*power(alpha,2)*U2(m1e,m2e))) + Q1(m1e,m2e)*((alpha*delta*kappa -

GAMS Code III

```
alpha*kappa*power(delta,2))*U2(m1e,m2e) +
Q2(m1e,m2e)*(delta*power(kappa,2) - power(delta,2)*power(kappa,2)
+ alpha*delta*power(kappa,2)*U2(m1e,m2e))))*V1(m1e,m2e + 1) +
(delta - power(delta,2) + kappa*power(delta,2)*Q2(m1e,m2e) +
alpha*power(delta,2)*U2(m1e,m2e))*V1(m1e - 1,m2e) +
alpha*power(delta,2))*U2(m1e,m2e) + Q2(m1e,m2e)*(delta*kappa -
kappa*power(delta,2) + alpha*delta*kappa*U2(m1e,m2e)))*V1(m1e -
1,m2e + 1) + ((alpha*delta*kappa -
alpha*kappa*power(delta,2))*Q2(m1e,m2e)*U1(m1e,m2e) +
U1(m1e,m2e)*(alpha - 2*alpha*delta + alpha*power(delta,2) +
(delta*power(alpha,2) -
```

GAMS Code IV

power(alpha,2)*power(delta,2))*U2(m1e,m2e)) + Q1(m1e,m2e)*(kappa)- 2*delta*kappa + kappa*power(delta,2) + Q2(m1e,m2e)*(delta*power(kappa,2) - power(delta,2)*power(kappa,2) + alpha*delta*power(kappa,2)*U1(m1e,m2e)) + (alpha*delta*kappa alpha*kappa*power(delta,2))*U2(m1e,m2e) +U1(m1e,m2e)*(alpha*kappa - alpha*delta*kappa + delta*kappa*power(alpha,2)*U2(m1e,m2e))))*V1(m1e + 1,m2e) +((alpha*delta - alpha*power(delta,2))*U1(m1e,m2e) + Q1(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +alpha*delta*kappa*U1(m1e,m2e)))*V1(m1e + 1,m2e - 1) +((power(alpha,2) - 2*delta*power(alpha,2) +power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +

GAMS Code V

Q2(m1e,m2e)*U1(m1e,m2e)*(alpha*kappa - 2*alpha*delta*kappa + alpha*kappa*power(delta,2) + (kappa*power(alpha,2) delta*kappa*power(alpha,2))*U2(m1e,m2e)) +Q1(m1e,m2e)*((alpha*kappa - 2*alpha*delta*kappa +alpha*kappa*power(delta,2))*U2(m1e,m2e) + (kappa*power(alpha,2) delta*kappa*power(alpha,2))*U1(m1e,m2e)*U2(m1e,m2e) +Q2(m1e,m2e)*(power(kappa,2) - 2*delta*power(kappa,2) +power(delta,2)*power(kappa,2) + (alpha*power(kappa,2) alpha*delta*power(kappa,2))*U2(m1e,m2e) +U1(m1e,m2e)*(alpha*power(kappa,2) - alpha*delta*power(kappa,2) +power(alpha,2)*power(kappa,2)*U2(m1e,m2e))))*V1(m1e + 1,m2e + 1,m2e))))1)))/((1 + kappa*Q1(m1e,m2e))*(1 + kappa*Q2(m1e,m2e))*(1 + kappa*Q2(m1e,m2e)alpha*U1(m1e,m2e))*(1 + alpha*U2(m1e,m2e)));

And that was just one of 6 equations

Results

S	Var	rows	non-zero	dense(%)	Steps	RT (m:s)
20	2400	2568	31536	0.48	5	0:03
50	15000	15408	195816	0.08	5	0:19
100	60000	60808	781616	0.02	5	1:16
200	240000	241608	3123216	0.01	5	5:12

 $\label{eq:convergence} \mbox{ Convergence for } S = 200$

Iteration	Residual
0	1.56(+4)
1	1.06(+1)
2	1.34
3	2.04(-2)
4	1.74(-5)
5	2.97(-11)

Karl Schmedders Solving Dynamic Games

Extensions

Complementarity problems

Continuous time setting