
Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Solving Dynamic Games with Newton’s Method

Karl Schmedders

Kellogg School of Management

Northwestern University

Institute for Computational Economics

University of Chicago

August 2, 2007

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Discrete-Time Finite-State Stochastic Games

Central tool in analysis of strategic interactions among forward-looking
players in dynamic environments

Example: The Ericson & Pakes (1995) model of dynamic competition in
an oligopolistic industry

Little analytical tractability

Most popular tool in the analysis: The Pakes & McGuire (1994)
algorithm to solve numerically for an MPE (and variants thereof)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Applications

Advertising (Doraszelski & Markovich 2007)

Capacity accumulation (Besanko & Doraszelski 2004, Chen 2005, Ryan
2005, Beresteanu & Ellickson 2005)

Collusion (Fershtman & Pakes 2000, 2005, de Roos 2004)

Consumer learning (Ching 2002)

Firm size distribution (Laincz & Rodrigues 2004)

Learning by doing (Benkard 2004, Besanko, Doraszelski, Kryukov &
Satterthwaite 2007)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Applications cont’d

Mergers (Berry & Pakes 1993, Gowrisankaran 1999)

Network externalities (Jenkins, Liu, Matzkin & McFadden 2004,
Markovich 2004, Markovich & Moenius 2007)

Productivity growth (Laincz 2005)

R&D (Gowrisankaran & Town 1997, Auerswald 2001, Song 2002,
Yeltekin et al. 2007)

Technology adoption (Schivardi & Schneider 2005)

International trade (Erdem & Tybout 2003)

Finance (Goettler, Parlour & Rajan 2004, Kadyrzhanova 2005).

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Need for better Computational Techniques

Doraszelski and Pakes (2006, in: Handbook of IO)

“Moreover the burden of currently available techniques for computing
equilibria to the models we do know how to analyze is still large enough
to be a limiting factor in the analysis of many empirical and theoretical
issues of interest.”

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

This Tutorial

1. Discrete-Time Finite-State Stochastic Games

2. Separable Game

3. Solution Methods for Dynamic Games

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Discrete-Time Finite-Space Stochastic Games

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

State Space

Infinite-horizon game in discrete time t = 0, 1, 2, . . .

Set of N players, i = 1, . . . , N

At time t player i is in one of finitely many states xi
t ∈ Xi

State space of the game X =
∏

iX
i

State in period t is xt = (x1
t , . . . , x

N
t)

Notation: x−i
t = (x1

t , . . . , x
i−1
t , xi+1

t , . . . , xN
t)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Player’s Actions and Transitions

Player i’s action in period t is ui
t ∈ U i(xt)

Set of feasible actions U i (xt) is arbitrary, often U i = RK
+

Players’ actions at time t: ut = (u1
t , . . . , u

N
t)

Law of motion: State follows a controlled discrete-time, finite-state,
first-order Markov process with transition probability Pr (x′|ut, xt)

Special case of independent transitions:

Pr
(
x′|ut, xt

)
=

N∏
i=1

Pri
((
x′

)i |ui
t, x

i
t

)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Objective Function

Player i receives a payoff of πi(ut, xt) in period t

Objective is to maximize the expected NPV of future cash flows

E

{ ∞∑
t=0

βtπi (ut, xt)

}
,

with discount factor β ∈ (0, 1)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Bellman Equation

V i(x) is the expected NPV to player i if the current state is x

Bellman equation for player i is

V i (x) = max
ui

πi
(
ui, U−i (x) , x

)
+ βEx′

{
V i

(
x′

)
|ui, U−i (x) , x

}
(1)

where U−i (x) denotes feedback (Markovian) strategies of other players

Player i’s strategy is given by

U i (x) = arg max
ui

πi
(
ui, U−i (x) , x

)
+ βEx′

{
V i

(
x′

)
|ui, U−i (x) , x

}
(2)

System of equations defined by (1) and (2) for each player i = 1, . . . , N
and each state x ∈ X defines a pure-strategy MPE

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Example of a Separable Game: Patent Race

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Patent Race Between Two Firms

N innovation stages

Firms start race at stage 0

Period t innovation stages: (x1,t, x2,t) where
xi,t ∈ X ≡ {0, ..., N} , i = 1, 2

Period t investment: ai,t ∈ A = [0, Ā] ⊂ R+, i = 1, 2

Cost of investment: Ci(a) = cia
η, η ∈ N, ci > 0, i = 1, 2

Independent and stochastic innovation technologies

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Transition from State to State

Transition from period to period: xi,t+1 = xi,t or xi,t+1 = xi,t + 1

Markov process (depends on investment levels)

Firm i’s state evolves according to

xi,t+1 =

 xi,t, with probability p(xi,t|ai,t, xi,t)

xi,t + 1, with probability p(xi,t + 1|ai,t, xi,t)

Distribution over next period’s states

p(x|a, x) = F (x|x)a

p(x+ 1|a, x) = 1− F (x|x)a

F (x|x) ∈ (0, 1) is probability that there is no change in state if a = 1
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Firms’ Optimization Problem

First firm to reach state N wins the race and receives prize Ω

Ties are broken by flip of a coin

Firms discount future costs and revenues at common rate β < 1

Firms’ objective: maximize expected discounted payoffs

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Equilibrium I

Restriction to pure Markov strategies

Firm i’s strategy: σi(·) : X ×X → A

Expected discounted payoff: Vi(·) : X ×X → R

Bellmann equation for xi, x−i < N ,

Vi(xi, x−i) =

maxai∈A

{
−Ci(ai) + β

∑
x′i,x

′
−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x′i, x
′
−i)

}

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Equilibrium II

Boundary condition at terminal states

Vi(xi, x−i) =

Ω, for x−i < xi = N

Ω/2, for xi = x−i = N

0, for xi < x−i = N

Optimal strategies satisfy

σi(xi, x−i) =

arg maxai∈A

−Ci(ai) + β
∑

x
′
i,x

′
−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x′i, x
′
−i)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Our Equilibrium Equations

0 = −Vi(xi, x−i)− cia
η
i + β

∑
x
′
i,x

′
−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x′i, x
′
−i)

0 = −ηciaη−1
i + β

∑
x
′
i,x

′
−i

∂

∂ai
p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x′i, x

′
−i)

Parameter specification: c1, c2, η, F (x1, x2) ≡ F , Ω

Unknowns: V1(x1, x2), V2(x1, x2), a1(x1, x2), a2(x1, x2)

Four equations per stage (xi, x−i)

Backward induction: instead of solving all equations simultaneously

solve each stage game separately
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solving Systems of Nonlinear Equations

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Nonlinear Systems of Equations

System F (x) = 0 of n nonlinear equations in n variables
x = (x1, x2, . . . , xn) ∈ Rn

F1(x1, x2, . . . , xn) = 0
F2(x1, x2, . . . , xn) = 0

...
Fn−1(x1, x2, . . . , xn) = 0
Fn(x1, x2, . . . , xn) = 0

Initial guess x0 = (x0
1, x

0
2, . . . , x

0
n)

Methods generate a sequence of iterates x0, x1, x2, . . . , xk, xk+1, . . .

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solution Methods

Most popular methods in economics for solving F (x) = 0

1. Gauss-Jacobi Method

2. Gauss-Seidel Method

3. Newton’s Method

4. Homotopy Methods

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Gauss-Jacobi Method
Last iterate xk = (xk

1, x
k
2, x

k
3, . . . , x

k
n−1, x

k
n)

New iterate xk+1 computed by repeatedly solving one equation in one
variable using only values from xk

F1(xk+1
1 , xk

2, x
k
3, . . . , x

k
n−1, x

k
n) = 0

F2(xk
1, x

k+1
2 , xk

3, . . . , x
k
n−1, x

k
n) = 0

...

Fn−1(xk
1, x

k
2, . . . , x

k
n−2, x

k+1
n−1, x

k
n) = 0

Fn(xk
1, x

k
2, . . . , x

k
n−2, x

k
n−1, x

k+1
n) = 0

Computer storage: Need to store both xk and xk+1

Interpretation as iterated simultaneous best reply
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Gauss-Seidel Method
Last iterate xk = (xk

1, x
k
2, x

k
3, . . . , x

k
n−1, x

k
n)

New iterate xk+1 computed by repeatedly solving one equation in one
variable and immediately updating the iterate

F1(xk+1
1 , xk

2, x
k
3, . . . , x

k
n−1, x

k
n) = 0

F2(xk+1
1 , xk+1

2 , xk
3, . . . , x

k
n−1, x

k
n) = 0

...

Fn−1(xk+1
1 , xk+1

2 , . . . , xk+1
n−2, x

k+1
n−1, x

k
n) = 0

Fn(xk+1
1 , xk+1

2 , . . . , xk+1
n−2, x

k+1
n−1, x

k+1
n) = 0

Computer storage: Need to store only one vector

Interpretation as iterated sequential best reply
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solving a Simple Cournot Game

N firms

Firm i’s production quantity qi

Total output is Q = q1 + q2 + . . .+ qN

Linear inverse demand function, P (Q) = A−Q

All firms have identical cost functions C(q) = 2
3cq

3/2

Firm i’s profit function Πi is

Πi = qiP (qi +Q−i)− C(qi) = qi (A− (qi +Q−i))−
2
3
cq

3/2
i

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

First-order Conditions

Necessary and sufficient first-order conditions

A−Q−i − 2qi − c
√
qi = 0

Firm i’s best reply R(Q−i) to a production quantity Q−i of its
competitors

qi = R(Q−i) =
(
A−Qi

2
+
c2

8

)
− c

2

√
A−Q−i

2
+
c2

16

Parameter values: N = 2 firms, A = 145, c = 4

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solving the Cournot Game with Gauss-Jacobi

k qk
i maxi |qk

i − qk−1
i |

0 10 −
1 52.9471 42.9471
2 34.3113 18.6358
3 42.3318 8.02047
4 38.8656 3.46613
5 40.3611 1.49545
6 39.7154 0.645682
7 39.9941 0.278695

15 39.9102 0.000336014
16 39.9100 0.000145047
20 39.910075 5.036 (−6)
21 39.910078 2.174 (−6)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solving the Cournot Game with Gauss-Seidel

k qk
1 qk

2 maxi |qk
i − qk−1

i |
0 10 10 −
1 52.9471 34.3113 42.9471
2 42.3318 38.8656 10.6153
3 40.3611 39.7154 1.97068
4 39.9941 39.8738 0.366987
5 39.9257 39.9033 0.0683762
6 39.913 39.9088 0.0127409
7 39.9106 39.9098 0.00237412
8 39.9102 39.91 0.000442391
9 39.9101 39.9101 0.0000824347

10 39.9101 39.9101 0.0000153608
11 39.91008 39.91008 2.862 (−6)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Gauss-Jacobi with N = 4 firms blows up

Cournot equilibrium qi = 25 for all firms
x0 = (24, 25, 25, 25)

k qk
1 qk

2 = qk
3 = qk

4 maxi |qk
i − qk−1

i |
1 25 25.4170 1
2 24.4793 24.6527 0.7642
3 25.4344 25.5068 0.9551
4 24.3672 24.3973 1.1095
5 25.7543 25.7669 1.3871

13 29.5606 29.5606 8.1836
14 19.3593 19.3593 10.201
15 32.1252 32.1252 12.766
20 4.8197 4.8197 37.373
21 50.9891 50.9891 46.169

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Newton’s Method

Foundation of Newton’s Method: Taylor’s Theorem

Theorem. Suppose the function F : X → Rm is continuously
differentiable on the open set X ⊂ Rn and that the Jacobian function JF

is Lipschitz continuous at x with Lipschitz constant γl(x). Also suppose
that for s ∈ Rn the line segment x+ θs ∈ X for all θ ∈ [0, 1]. Then, the
linear function L(s) = F (x) + JF (x)s satisfies

‖F (x+ s)− L(s)‖ ≤ 1
2
γL(x)‖s‖2 .

Taylor’s Theorem suggests the approximation
F (x+ s) ≈ L(s) = F (x) + JF (x)s

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Newton’s Method in Pure Form

Initial guess x0

Given iterate xk choose Newton step by calculating a solution sk to the
system of linear equations

JF (xk) sk = −F (xk)

New iterate xk+1 = xk + sk

Excellent local convergence properties

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Solving Cournot Game (N = 4) with Newton’s Method

k qk
i maxi |qk

i − qk−1
i |

0 10 −
1 24.6208 14.6208
2 24.9999 0.3791
3 25.0000 0.000108
4 25.0000 8.67(−12)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Shortcomings of Newton’s Method

If initial guess x0 is far from a solution Newton’s method may behave
erratically; for example, it may diverge or cycle (!)

If JF (xk) is singular the Newton step may not be defined

It may be too expensive to compute the Newton step sk for large
systems of equations

The root x∗ may be degenerate (JF (x∗) is singular) and convergence is
very slow

Practical variants of Newton-like methods overcome all these issues

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Practical Newton-like Method
General idea: Obtain global (!) convergence by combining the Newton
step with line-search or trust-region methods from optimization

Merit function monitors progress towards root of F

Most widely used merit function is sum of squares

M(x) =
1
2
‖F (x)‖2 =

1
2

n∑
i=1

F 2
i (x)

Any root x∗ of F yields global minimum of M

Local minimizers with M(x) > 0 are not roots of F

∇M(x̃) = JF (x̃)>F (x̃) = 0

and so F (x̃) 6= 0 implies JF (x̃) is singular
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Line Search Method

Newton step
Jf (xk) sk = −F (xk)

yields a descent direction of M as long as F (xk) 6= 0(
sk

)>
∇M(xk) =

(
sk

)>
JF (xk)>F (xk) = −‖F (xk)‖2 < 0

Given step length αk the new iterate is

xk+1 = xk + αksk

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Step length

Inexact line search condition (Armijo condition)

M(xk + αsk) ≤M(xk) + c α
(
∇M(xk)

)>
sk

for some constant c ∈ (0, 1)

Step length is the largest α satisfying the inequality

For example, try α = 1, 1
2 ,

1
22 ,

1
23 , . . .

This approach is not Newton’s method for minimization

No computation or storage of Hessian matrix

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Gaussian Methods
Newton’s Method

Global Convergence Property

Theorem. Suppose that JF is Lipschitz continuous and both ‖JF (x)‖
and ‖F (x)‖ are bounded above in an open neighborhood of the level set{
x : M(x) ≤M(x0)

}
. Under some further mild technical conditions the

sequence of iterates x0, x1, . . . , xk, xk+1, . . . satisfies(
JF (xk)

)>
F (xk) → 0

as k →∞.
Moreover, if ‖JF (xk)‖ ≥ δ > 0 then

F (xk) → 0.

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Cournot Game with Learning and Investment

N = 2 firms in dynamic Cournot competition

State of the game: production cost of two firms

Each period: Firms engage is quantity competition

Stochastic transition to state in next period depends on three forces

Learning: Current output may lead to lower production cost

Investment: Firms can also make investment expenditures to reduce cost

Depreciation: Shock to efficiency may increase cost

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Period Game
Firm i’s production quantity qi

Total output is Q = q1 + q2

Linear inverse demand function, P (Q) = A−Q

Firms’ production cost functions are quadratic CPi(q) = 1
2biq

2

Firms’ profit functions are

Π1 = q1 P (q1 + q2)− θ1

(
1
2
b1q

2
1

)

Π2 = q2 P (q1 + q2)− θ2

(
1
2
b2q

2
2

)
Efficiency of firm i is given by θi

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Dynamic Setting

Each firm can be in one of S states, j = 1, 2, . . . , S

State j of firm i determines its efficiency level
θi = Θ(j−1)/(S−1) for some Θ ∈ (0, 1)

Total range of efficiency levels [Θ, 1] for any S

Possible transitions from state j to states j − 1, j, j + 1 in next period

Transition probabilities for firm i depend on
production quantity qi
investment effort ui

depreciation shock

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Transition Probabilities

Probability of successful learning (j to j + 1), ψ(q) = κq
1+κq

Probability of successful investment (j to j + 1), φ(u) = αu
1+αu

Cost of investment for firm i, CIi(u) = 1
S−1

(
1
2diu

2
)

Probability of depreciation shock, δ

These individual probabilities,appropriately combined, yield transition
probabilities

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Equilibrium Equations

Bellman equation for each firm

First-order condition w.r.t. quantity qi

First-order condition w.r.t. investment ui

Three equations per firm per state

Total of 6 S2 equations

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

GAMS Code I

V1(m1e,m2e) =e= Q1(m1e,m2e)*(1 - Q1(m1e,m2e)/M -
Q2(m1e,m2e)/M) - ((b1*power(Q1(m1e,m2e),2))/2. +
a1*Q1(m1e,m2e))*theta1(m1e) - ((d1*power(U1(m1e,m2e),2))/2. +
c1*U1(m1e,m2e))/(-1 + Nst) + (beta*((1 - 2*delta + power(delta,2)
+ Q2(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
alpha*kappa*power(delta,2)*U1(m1e,m2e)) + (alpha*delta -
alpha*power(delta,2))*U2(m1e,m2e) + Q1(m1e,m2e)*(delta*kappa -
kappa*power(delta,2) + power(delta,2)*power(kappa,2)*Q2(m1e,m2e)
+ alpha*kappa*power(delta,2)*U2(m1e,m2e)) +
U1(m1e,m2e)*(alpha*delta - alpha*power(delta,2) +

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

GAMS Code II

power(alpha,2)*power(delta,2)*U2(m1e,m2e)))*V1(m1e,m2e) + (delta -
power(delta,2) + kappa*power(delta,2)*Q1(m1e,m2e) +
alpha*power(delta,2)*U1(m1e,m2e))*V1(m1e,m2e - 1) + ((alpha -
2*alpha*delta + alpha*power(delta,2))*U2(m1e,m2e) +
(delta*power(alpha,2) -
power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +
Q2(m1e,m2e)*(kappa - 2*delta*kappa + kappa*power(delta,2) +
(alpha*kappa - alpha*delta*kappa)*U2(m1e,m2e) +
U1(m1e,m2e)*(alpha*delta*kappa - alpha*kappa*power(delta,2) +
delta*kappa*power(alpha,2)*U2(m1e,m2e))) +
Q1(m1e,m2e)*((alpha*delta*kappa -

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

GAMS Code III

alpha*kappa*power(delta,2))*U2(m1e,m2e) +
Q2(m1e,m2e)*(delta*power(kappa,2) - power(delta,2)*power(kappa,2)
+ alpha*delta*power(kappa,2)*U2(m1e,m2e))))*V1(m1e,m2e + 1) +
(delta - power(delta,2) + kappa*power(delta,2)*Q2(m1e,m2e) +
alpha*power(delta,2)*U2(m1e,m2e))*V1(m1e - 1,m2e) +
power(delta,2)*V1(m1e - 1,m2e - 1) + ((alpha*delta -
alpha*power(delta,2))*U2(m1e,m2e) + Q2(m1e,m2e)*(delta*kappa -
kappa*power(delta,2) + alpha*delta*kappa*U2(m1e,m2e)))*V1(m1e -
1,m2e + 1) + ((alpha*delta*kappa -
alpha*kappa*power(delta,2))*Q2(m1e,m2e)*U1(m1e,m2e) +
U1(m1e,m2e)*(alpha - 2*alpha*delta + alpha*power(delta,2) +
(delta*power(alpha,2) -

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

GAMS Code IV

power(alpha,2)*power(delta,2))*U2(m1e,m2e)) + Q1(m1e,m2e)*(kappa
- 2*delta*kappa + kappa*power(delta,2) +
Q2(m1e,m2e)*(delta*power(kappa,2) - power(delta,2)*power(kappa,2)
+ alpha*delta*power(kappa,2)*U1(m1e,m2e)) + (alpha*delta*kappa -
alpha*kappa*power(delta,2))*U2(m1e,m2e) +
U1(m1e,m2e)*(alpha*kappa - alpha*delta*kappa +
delta*kappa*power(alpha,2)*U2(m1e,m2e))))*V1(m1e + 1,m2e) +
((alpha*delta - alpha*power(delta,2))*U1(m1e,m2e) +
Q1(m1e,m2e)*(delta*kappa - kappa*power(delta,2) +
alpha*delta*kappa*U1(m1e,m2e)))*V1(m1e + 1,m2e - 1) +
((power(alpha,2) - 2*delta*power(alpha,2) +
power(alpha,2)*power(delta,2))*U1(m1e,m2e)*U2(m1e,m2e) +

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

GAMS Code V
Q2(m1e,m2e)*U1(m1e,m2e)*(alpha*kappa - 2*alpha*delta*kappa +
alpha*kappa*power(delta,2) + (kappa*power(alpha,2) -
delta*kappa*power(alpha,2))*U2(m1e,m2e)) +
Q1(m1e,m2e)*((alpha*kappa - 2*alpha*delta*kappa +
alpha*kappa*power(delta,2))*U2(m1e,m2e) + (kappa*power(alpha,2) -
delta*kappa*power(alpha,2))*U1(m1e,m2e)*U2(m1e,m2e) +
Q2(m1e,m2e)*(power(kappa,2) - 2*delta*power(kappa,2) +
power(delta,2)*power(kappa,2) + (alpha*power(kappa,2) -
alpha*delta*power(kappa,2))*U2(m1e,m2e) +
U1(m1e,m2e)*(alpha*power(kappa,2) - alpha*delta*power(kappa,2) +
power(alpha,2)*power(kappa,2)*U2(m1e,m2e)))))*V1(m1e + 1,m2e +
1)))/((1 + kappa*Q1(m1e,m2e))*(1 + kappa*Q2(m1e,m2e))*(1 +
alpha*U1(m1e,m2e))*(1 + alpha*U2(m1e,m2e)));

And that was just one of 6 equations
Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Results

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)

Karl Schmedders Solving Dynamic Games

Discrete-Time Finite-Space Stochastic Games
Separable Game

Nonlinear Equations
Dynamic Game Application

Extensions

Complementarity problems

Continuous time setting

Karl Schmedders Solving Dynamic Games

	Discrete-Time Finite-Space Stochastic Games
	Separable Game
	Nonlinear Equations
	Gaussian Methods
	Newton's Method

	Dynamic Game Application

